PLS for Big Data: A unified parallel algorithm for regularised group PLS
نویسندگان
چکیده
منابع مشابه
PLS discriminant analysis for functional data
Partial least squares regression on functional data is applied in the context of linear discriminant analysis with binary response. The discriminant coefficient function is then used to compute scores which allow to assign a new curve to one of the two classes. The method is applied to gait data and the results are compared with those given by linear discriminant analysis and logistic regressio...
متن کاملPLS classification of functional data
Partial least squares (PLS) approach is proposed for linear discriminant analysis (LDA) when predictors are data of functional type (curves). Based on the equivalence between LDA and the multiple linear regression (binary response) and LDA and the canonical correlation analysis (more than two groups), the PLS regression on functional data is used to estimate the discriminant coefficient functio...
متن کاملDeviance residuals-based sparse PLS and sparse kernel PLS regression for censored data
MOTIVATION A vast literature from the past decade is devoted to relating gene profiles and subject survival or time to cancer recurrence. Biomarker discovery from high-dimensional data, such as transcriptomic or single nucleotide polymorphism profiles, is a major challenge in the search for more precise diagnoses. The proportional hazard regression model suggested by Cox (1972), to study the re...
متن کاملPerformance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data
Multivariate partial least square (PLS) regression allows the modeling of complex biological events, by considering different factors at the same time. It is unaffected by data collinearity, representing a valuable method for modeling high-dimensional biological data (as derived from genomics, proteomics and peptidomics). In presence of multiple responses, it is of particular interest how to ap...
متن کاملKernel PLS variants for regression
We focus on covariance criteria for finding a suitable subspace for regression in a reproducing kernel Hilbert space: kernel principal component analysis, kernel partial least squares and kernel canonical correlation analysis, and we demonstrate how this fits within a more general context of subspace regression. For the kernel partial least squares case some variants are considered and the meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics Surveys
سال: 2019
ISSN: 1935-7516
DOI: 10.1214/19-ss125